
A Probabilistic Software System Attribute Acceptance
Paradigm for COTS Software Evaluation

A. Terry Morris*
NASA Langley Research Center, Hampton, Virginia 23681

Standard software requirement formats are written from top-down perspectives only,
that is, from an ideal notion of a client’s needs. Despite the exactness of the standard format,
software and system errors in designed systems have abounded. Bad and inadequate
requirements have resulted in cost overruns, schedule slips and lost profitability.
Commercial off-the-shelf (COTS) software components are even more troublesome than
designed systems because they are often provided as is and subsequently delivered with
unsubstantiated validation of described capabilities. For COTS software, there needs to be a
way to express the client’s software needs in a consistent and formal manner using software
system attributes derived from software quality standards. Additionally, the format needs
to be amenable to software evaluation processes that integrate observable evidence garnered
from historical data. This paper presents a paradigm that effectively bridges the gap
between what a client desires (top-down) and what has been demonstrated (bottom-up) for
COTS software evaluation. The paradigm addresses the specification of needs before the
software evaluation is performed and can be used to increase the shared understanding
between clients and software evaluators about what is required and what is technically
possible.

Nomenclature
ABC = Acceptable Behavior Constraints
CPD = conditional probability distribution
DAG = directed acyclic graph
CBS = COTS-based system
COTS = Commercial off-the-shelf
G = a graph of topological dependence structure
I(.,.|.) = a conditional independence rule
ISO/IEC = International Organization of Standardization/International Electrotechnical Commission
JPD = joint probability distribution
()xp = the unconditional probability distribution
(xπ|xp)

 = a conditional probability distribution

xπ = parents of node x
ROS = Rest of the System
SEI = Software Engineering Institute (SEI)
X, Y = sets of variables
x, y = instantiated variables

I. Introduction
HE global demand for commercial off-the-shelf (COTS) software has increased to the point where they have
become standard components of many of today’s mission- and safety-critical systems. As the commercial

market provides an increased diversification of software products (each with uncertain pedigree), there is an
increased need for COTS software evaluation techniques to analyze and compare the fit or misfit between
competing offers. It is important to choose the right COTS product, particularly for safety-critical systems. Most

T

* Senior Research Engineer, Safety-Critical Avionics Systems, Mail Stop 130, AIAA Lifetime Associate Fellow.

American Institute of Aeronautics and Astronautics

1

COTS software evaluation techniques are custom tailored to a client’s needs, and hence, are not effective as general
acceptance tools. The techniques that are general tend to suffer from two main problems. The first problem
involves the inability to accommodate COTS software trade-offs in the requirements acquisition process. This leads
to numerous iterations between the client and the software evaluator to discover and rediscover the client’s purpose
and intent for the software. Most of the time is spent clarifying the specifications because clients usually do not
understand what they need. Another large portion of time is spent in discovery and augmentation mode, that is, the
client discovers that some new COTS software capability exists for which he/she had no prior knowledge and
commences to augment the requirements to include this new capability. These intensive sessions add considerable
time to the requirements acquisition process. The second problem involves establishing a set of consistent
definitions and qualitative structures for software attributes. Subsequently, there are issues of how to incorporate
these attributes to quantify evaluation metrics. Morris and Beling1 have recently developed a process that extracts
attribute dependency models from software quality standards for COTS software evaluation. In their research, the
definition and structure of software attributes and their relationships are extracted in the form of a dependency
model that can be quantified probabilistically using historical COTS software data in the context of Bayesian causal
networks. The research in this paper augments the previous research by focusing on the first problem, that is, the
development of a probabilistic attribute acceptance paradigm as a means of expressing a client’s COTS software
needs including the trade-offs that generally accompany the requirements acquisition process. As in the previous
research, the proposed paradigm is intended to be used in a probabilistic Bayesian network context.

The Software Engineering Institute (SEI) has reported that there is no one best evaluation technique for all
COTS software evaluations2. Within the evaluation timeline, software and system requirements tend to creep and
evolve. Every change to the requirements inevitably leads to a new software evaluation. The purpose of the research
in this paper is to help reduce the time involved in the iterative requirements process by establishing an acceptance
paradigm that incorporates a client’s needs and trade-offs before evaluation commences. This new acceptance
paradigm requires the client to spend more time in the beginning of the process evaluating their needs and their
wants including probabilistic representations of their preference orders and the acceptance or rejection of particular
trade-offs. Background information related to COTS software evaluations, the software requirements acquisition
process and dependency model extraction for software attributes are described in the next section. Section III
provides a description and explanation of the attribute acceptance paradigm and reveals how the paradigm is used in
the context of a probabilistic software evaluation process.

II. Background
The attribute acceptance paradigm (to be described in the next section) was one of a number of contributions

developed within an overall methodology for COTS software scoring3. Only the areas of primary interest to the
acceptance paradigm will be discussed. These areas include the state of COTS software evaluations, the problem
with software requirements, and the software attribute dependency model extraction process.

A. COTS Software Evaluations
Over the past two decades, there has been a dramatic increase in the demand and availability of COTS software

products. These products serve as either stand alone items or as components in larger COTS-based systems (CBS).
In the COTS software market, vendors control the product’s development and future evolution. Purchasers of
COTS software products often do not know the internals of the product because they are not given access to the
source code4. In this sense, COTS software is viewed as a black-box item. Over the past decade, there has been an
expanding effort by business and government to incorporate more pre-existing software into their systems. Some
federal agencies have even gone so far as to establish policy requiring software procurers to justify why they are not
using COTS products5,6. The rationale for utilizing COTS is primarily to lower development costs and time, to
reduce maintenance effort, and to take advantage of advancements in technology. This increased dependence on
COTS software has introduced substantial risks to software procurers, particularly those involved with safety or
mission-critical systems. The risks stem from the fact that source code is generally not available and there is no
control over the evolution of the product7. In 2001, it has been estimated that 99 percent of all executing computer
instructions come from COTS products8. Thus, COTS software use is driven by economic necessity. Despite this
necessity, the benefits, costs, and other risks of COTS software should be carefully weighed against other options.
The lack of visibility into source code introduces worse case uncertainty when analyzing whether or not to accept
COTS software. In what ways can this uncertainty be minimized and/or mitigated? In various safety- and mission-
critical systems, COTS software has been incorporated with the introduction of protectors and/or wrappers9. For
most types of mission-critical systems, the COTS acceptance process involves establishing systems and software

American Institute of Aeronautics and Astronautics

2

requirements, testing a pool of candidate software products and evaluating the candidates with respect to the
requirements. Evaluation results typically provide a ranking of the candidate products and some threshold that
identifies the degree to which the products satisfy the requirements.

Software not developed specifically for a project may contain undesirable defects or faults. Some of these faults
are caused by improper execution of code; however, the area that produces more faults revolves around the behavior
of the software relative to the intent of the requirements. Checking the software’s behavior against specified
software requirements can generally identify these faults. Identification of software faults has traditionally been
assessed via testing. Exhaustive testing, however, is intractable since programs generally have a combinatorial
explosion of input states and paths10. Alternatively, projects usually try for coverage, that is, test all statements in
the software’s code at least once. Though intuitive, coverage testing really does not accomplish much since many
software programs can have many states. The proliferation of COTS software products reduces software evaluation
reliability substantially since exhaustive and coverage testing cannot be performed due to lack of visibility of the
source code. In this scenario, evaluating techniques that quantify the degrees of acceptance of a product must be
used based on data that represents actual behavior of the product. These data can be garnered from software and
qualification testing, vendor design specifications, end user product testing, customer experiences with the product,
etc.

There are two primary issues that hinder the acceptance of the general COTS software evaluation process. The
first issue involves the inability to accommodate the COTS software trade-offs in the requirements acquisition
process. The second issue involves determining metrics, that is, the definition and treatment of software attributes
that are consistent, general and flexible for various software evaluations. A proposed solution for the second issue is
described by Morris and Beling1. The research in this paper proposed a solution for the first issue. Before revealing
the proposed solution, there must be an explanation describing why the standard software requirements format is
inadequate for COTS software evaluation.

B. The Problem with Requirement Specifications for COTS Software
Requirements acquisition is a process of developing a shared understanding between clients and developers

about what is required and what is technically possible11. It is, in essence, a trade-off within the design space.
Requirements acquisition, in this sense, is an early phase of requirements management and can be partitioned into
systems and software components. The goal of software requirements is for a client to determine what they want
assuming they know what is currently possible. For the longest time, software requirements have been written
deterministically, that is, from a perspective that the required software will perform exactly in a described manner,
no more, no less (see Figure 1). Theoretically, this works well for custom-developed software. Despite the
exactness of the current format, software and system errors in designed systems have abounded. Bad and inadequate
requirements have resulted in cost overruns, schedule slips, frustrated employees, unhappy customers and lost
profitability12. Raymond Dion of Raytheon found that approximately 40 percent of the total budget for software
projects was rework13. Barry Boehm, who developed a widely used software cost estimation model, estimates that
the cost of rework approaches 50 percent on large software projects14. Bell Labs and IBM studies have determined
that 80 percent of all product defects are inserted in the requirements definition stage12. In general, rework
consumes 40 to 50 percent of software project budgets. This means that requirement errors take up to a 42 percent
bite out of total software development resources. Hence, any improvement in the requirements definitions phase
will produce significant savings in both time and money.

Requirements definition is hard because clients frequently do not understand their own needs or know what they
fully want before engaging a developer or software evaluator15. To compound the problem, developers make
assumptions about client needs and do not check their assumptions before charging into development. Concurrently,
customer expectations drift during the development and procurement phases. What are possible solutions to this
problem? Sutcliffe has shown that there is an inevitable intertwining between system and software requirements and
that the interactions between systems and software should be modeled as well16.

Some requirements definition researchers view the world as moving and dynamic (uncertain and probabilistic),
hence a place where all the variables are not known that leads to the inevitable intertwining between specification
and design. Other researchers view the world as closed (deterministic), that is, all the variables that might influence
the requirements are assumed known. The current shift to COTS software products embodies the perspective that
users do not know or understand all the possible (and perhaps anomalous) behaviors that can occur. This lack of
insight leads a user to a more uncertain and hence, probabilistic viewpoint. Various techniques can be used to
minimize COTS uncertainties within software requirements. Prevalent techniques involve the use of wrappers and
protectors to prevent anomalous COTS software behavior from causing hazardous and unwanted events in complex

American Institute of Aeronautics and Astronautics

3

Figure 1. Standard Requirements Format.

computer systems17. For this technique, software requirements are considered more deterministic. Behavioral
deviations between the COTS software product and the software requirements are compensated by the
wrapper/protector. The COTS software/wrapper/protector combination, in this sense, works in concert to fulfill the
software requirements. These techniques have their own benefits and liabilities that must be carefully weighed.
Another technique recommends employing a highly iterative and interleaved process between requirements
elicitation and software evaluation18. Some organizations are starting to utilize this highly iterative approach for
requirements management.

The research in this paper differs from previous approaches in that it requires the client to specify their needs
including the technical performance trade-offs they are willing to make a priori, that is, before the software
evaluation begins. Current industry practice calls for the developer or evaluator to perform requirements trade-off
studies on behalf of the client during and after the acquisition process to help determine the set of requirements that
is necessary and affordable. Often such analysis and understanding do not become manifest to the client until after
the software has been delivered or evaluated, in which case, of course, it is too late to react effectively19. In many
cases, the last 10% of requirements can drive a huge increase in cost, a relationship of which the client may be
unaware. Indeed, the client may have no appreciation whether this last 10% is even necessary for the intended
mission and, thus, not understand the mission may be effectively performed by a software alternative that is much
less costly to procure. The research in this paper is less deterministic in that the trade-offs are described in a more
probabilistic format. The attribute acceptance paradigm serves to specify desirable functional obligations of the
COTS software and system combination with an underlying purpose similar to the Acceptable Behavior Constraints
(ABC’s) espoused by Popov et al20. The attribute trade-offs in the software requirements (or attribute acceptance
document) will serve the same purpose as the iterative and interleaving process described by Maiden18. The primary
difference is the distribution of energy dedicated to the process. The highly iterative process18 requires many
discussions with the client and is spread out over time. The requirements format in this research requires very few
interactions with the client but is more temporally-demanding initially since it requires the client to describe not only
their software requirements but also the technical performance trade-offs they are willing to accept in the decision
space a priori. This new paradigm is developed to be used primarily in the normative (acceptance testing) context
but may be adapted to play a crucial role in formative (design to capabilities of products) evaluations.

American Institute of Aeronautics and Astronautics

4

C. Dependency Model Extraction from Software Quality Standards
As stated earlier, general COTS software evaluation techniques suffer from the lack of use of standardized

software metrics, that is, the definition and treatment of software attributes that are consistent, general and flexible
for various forms of evaluation. Previous research by Morris and Beling1 has revealed a process that extracts
attribute dependency models from software quality standards for COTS software evaluation. A brief overview of
the attribute dependency model will be discussed here since the attribute acceptance paradigm has been designed
particularly for such descriptions of attribute relationships.

Dependency is a statement about a set of variables. Formally, a dependency model21 is a pair M = (U, I), where
U is a finite set of elements or variables, and I(.,.|.) is a rule that assigns truth values to a three place predicate whose
arguments are disjoint subsets of U. The interpretation of the conditional independence assertion I(X, Y | Z) is that
having observed Z, no additional information about X could be obtained by also observing Y. In a probabilistic
model, I(X, Y | Z) holds if and only if

() ()zxPyzxP |,| = whenever () 0| >yzP (1)

for every instantiation x, y and z of the sets of variables X, Y and Z.

A graphical representation of a dependency model M = (U, I) is a direct correspondence between the elements in
U and the set of nodes in a given graph, G, such that the topology of G reflects the independence assertions of I.
There are different kinds of graphical models. The most common are undirected graphs (Markov networks) and
directed graphs (Bayesian networks). Each one has its own merits and shortcomings, but neither of these two
representations has more expressive power than the other22. These graphical models are knowledge representation
tools used by an increasing number of scientists and researchers. The reason for the extended success of graphical
models is their capacity to represent complexity and to handle independence relationships, which has proved crucial
for the storage of information.

Graphical models that represent directed dependencies are known as Bayesian networks and they result in a
powerful knowledge representation formalism based on probability theory. Bayesian networks are graphical models
where the nodes represent random variables, the arcs signify the existence of direct causal influences between the
variables, and the strengths of these influences are expressed by forward conditional probabilities21.

Formally, a Bayesian network is a pair, B = (G, P), defined by a set of variables X = (X1,…,Xn), where G is a
directed acyclic graph (DAG) defining a model M of conditional dependencies among the elements of X,

() ()()nP ππ |,...,| 1 n1 xpxp= (2)

 is a set of n conditional probability distributions (CPDs), one for each variable, and iπ is the set of parents of node
Xi in G. The set P encodes the conditional independence assumptions of G to induce a factorization of the joint
probability distribution (JPD) as

() ()∏
=

=
n

i
i

1

|πixpxp . (3)

When the random variables are discreet, the types of distribution applied to each variable will be multinomial,

thereby describing a multinomial Bayesian network. In multinomial Bayesian networks, all variables in X are
discrete, that is, each variable has a finite set of possible values. An advantage of Bayesian networks is its natural
perception of causal influences thus making it an unambiguous representation of dependency23. This is useful for
the COTS evaluation problem in that it allows for the explicit identification of influences between attributes of each
software product. Moreover, the Bayesian network’s requirement of strict positivity allows it to serve as an
inference instrument for logical and functional dependencies. Furthermore, its ability to quantify the influences with
local, conceptually meaningful parameters allows it to serve as a globally consistent knowledge base. In this way,
Bayesian networks are natural tools for dealing with uncertainty and complexity.

The dependency structure (G) of a Bayesian network is usually extracted from domain experts. The term
probability model refers to a complete specification of the JPD over a set of variables. Therefore, the terms
probability model and JPD are used interchangeably. The JPD contains structural as well as quantitative
information about the relationships among the variables. The term dependency model will be used to refer only to
the causal structure of the relationships among a set of variables.

American Institute of Aeronautics and Astronautics

5

Figure 2. ISO/IEC 9126-1 External and Internal Quality Attributes24.

In the previous research, Morris and Beling1 have described a way to extract dependency models from the
ISO/IEC 9126-124 software product quality standard. The ISO/IEC 9126-1 standard can be viewed as a knowledge
base of software attributes, sub-attributes and their relationships developed by expert consensus. In the case of
ISO/IEC 9126-1, at least 75% of the national bodies that voted were required for approval of the standard. The
experts in this standard provided six quality characteristics (attributes) and guidelines for their use. Additionally, the
standard supports software product evaluation by providing a quality model framework that explains the
relationships between different approaches to quality. Clear definitions of attributes and supporting sub-attributes
are also provided (see Figure 2). Information in the standard describes the causal relationships between the
attributes and sub-attributes. Using their extraction process, the authors revealed a qualitative representation of the
attribute relationships within the ISO/IEC 9126-1 standard in the form of a JPD

() () () () () ()
() () () () ()
() () () ()
() () () ()
() () () () () ()
() () () () () ()
() () () ()SatisfpMU,R,F,|SafetypProdpEffp

pcpreplpcoexistpinstpadptppcrepl,coexist,adpt,inst,|Pp
mcptestpstabpchgpanalpmcstab,test,chg,anal,|Mp

ecpruptbpecru,tb,|Ep
ucpattrpE.Radpt,inst,chg,suit,|operplrnpundpattr,ucoper,und,lrn,|Up

rcprecpftpmatprcrec,ft,mat,|Rp
fcpsecpintrppaccpinst|suitpfcsec,acc,intrp,suit,FpJPD |=

() ()

 (4)

as well as an equivalent graphical representation of a DAG (see Figure 3). Explanations of the symbols for each
attribute label or node are found in the previous research and can be easily mapped from Figure 2. As a general
reference, F, R, U, E, M, and P represent Functionality, Reliability, Usability, Efficiency, Maintainability, and
Portability, respectively.

The graphical and mathematical descriptions of the attribute dependency relationships are crucial for COTS
software evaluations. First, the attribute dependency model describes how the software attributes relate to one
another with clear definitions in a concise manner thereby providing consistency across diverse evaluations.
Second, the dependency structure between the attribute and sub-attributes provides a coherent aggregation scheme
based on the international standard. Third, the incorporation of COTS historical data (similar to data normally
collected for evaluation) clustered to the various attributes and sub-attributes can provide a means of producing a
quantitative software evaluation based on probability theory. A methodology that uses this approach has been
developed by Morris3. It is important to note that this methodology quantifies attribute metrics from both top-down
(form of attribute sub-model is known) and bottom-up formalisms (model form is unknown but will be extracted
from available data using data mining techniques). These attribute model formalisms and how they will be used in
the attribute acceptance document will be described in the next section.

American Institute of Aeronautics and Astronautics

6

Figure 3. ISO/IEC 9126-1 Dependency Model.

III. The Attribute Acceptance Paradigm
The attribute acceptance paradigm is a format used for a probabilistic COTS software evaluation that allows a

client to specify the acceptance or rejection of clearly defined attributes as well as the technical performance trade-
offs that are acceptable for the system in which the software will be embedded. This paradigm is designed to be
used in a probabilistic software evaluation context (see Figure 4). The following subsections will describe the
specific evaluation context with particular emphasis on the attribute acceptance paradigm.

A. Context of Paradigm in a Probabilistic Software Evaluation Process
The diagram in Figure 4 represents the specific probabilistic software evaluation context used in this research.

The development of the attribute acceptance paradigm is shown as the shaded set of boxes in Figure 4. As shown in
the process, the client selects particular attributes and sub-attributes that are required for the evaluation. The client
then determines the type of model that will be developed for each required attribute. Attribute models may be either
top-down (the model form is provided by the client) or bottom-up (the model form is extracted from the available
data using data mining algorithms). For each attribute, the client then proceeds to express a probabilistic acceptance
criterion that describes how much of each sub-attribute will be accepted in combination with the other required sub-
attributes. Each probabilistic acceptance criterion is described in the form of a conditional probability distribution.
Additionally, the client may include contingencies a priori in the acceptance document in the event that some of the
COTS software data (used in the overall evaluation) is either missing or latent. The aggregation of the client’s
needs, trade-offs and contingencies is placed in the attribute acceptance document.

B. Specification of Client Needs, Trade-offs and Contingencies (Attribute Acceptance Document)
The attribute acceptance paradigm is used to express the client’s needs, desires, trade-offs, thresholds and

contingencies in a probabilistic software evaluation. In order to understand the information contained in the
attribute acceptance document, the following explanations will be provided.

1. Software Standard Selection for COTS Software Evaluation

The attribute acceptance paradigm requires a defined set of attributes and sub-attributes. In the previous
research, the international standard ISO/IEC 9126-1 was selected. However, any set of software quality
characteristics can be used as long as the attributes are formally defined and there is a description of how the
attributes relate to one another.

2. The Meaning of a Variable

For software evaluations, there are attribute and sub-attributes. Attributes are quality features of a product
decomposed into various sub-attributes whereas sub-attributes are mutually exclusive sub-characteristics of an
attribute. For the acceptance paradigm, attributes are treated as binary random variables. For example, let’s say that

American Institute of Aeronautics and Astronautics

7

Figure 4. The Probabilistic Software Evaluation Process.

p(Attribute 1 = True) = 1.0. This means that the software product completely meets the client’s attribute 1
expectations. For another certainty condition, let’s say that p(Attribute 1 = True) = 0.0. This means that the
software product does not meet the client’s attribute 1 expectations. On the other hand, for an uncertain condition,
like, p(Attribute 1 = True) = .8, this means that there is an 80% likelihood that the software product meets the
client’s attribute 1 expectations. In this paradigm, observations of sub-attribute random variables are taken from the
database of COTS software products. Thus, sub-attributes are associated with observable data and are linked to
attributes through conditional probability distributions.

3. The Meaning of Client-Developed Conditional Probability Distributions

When constructed by statistical data algorithms, conditional probability distributions describe how discrete
random variables are related to each other in a database given a structure. All the variables are present in the
database. CPDs generally take the form of contingency tables with the child node on the right and the parent node(s)
on the left. The values of the table elements are the probabilities computed from the database. In Figure 5, the prior
distributions of A and B and the structure of how they are related to C are shown. Given this information and the
data found in the database, it can be seen that p(A=blue) = .5 and p(B=>5) = .33. The resulting “standard” CPD that
represents the data in the database given the structure of the variables is also shown in Figure 5.

As used in this research, the CPD has a different meaning and is developed by the client and not the data. In the
attribute acceptance paradigm, the client-developed CPD describes the type of relationships that are acceptable
between an attribute and its sub-attributes. This relationship is seen as a description of software expectations or an
expression of the client’s software needs. In other words, the client has some prior knowledge about the system, the
interfaces and functionality required as well as the performance needs. The CPD, in this context, explains how the
client will adjust his software expectations in light of specific evidence. Higher values map to more favorable
expectations. For example, the client knows (from the attribute dependency structure) that the attribute reliability
and at least two sub-attributes (maturity and fault tolerance) are required by the COTS software product. However,
due to lack of source code visibility, the client can only rely on actual behavior of each COTS software products as
evidenced by the data. This data is usually acquired via testing. Given the attribute sub-attribute dependency
structure (provided in the software standard), the client can express his reliability needs in the form of a CPD before
the evaluation occurs. As seen in Figure 6, the client has provided four statements, namely, if the data from the
COTS software product provides evidence revealing that maturity is false and fault tolerance is false, then this
product does not meet my reliability needs or expectations. The second statement in the CPD states that if the
COTS data reveals that maturity is false and fault tolerance is true, then there is an 80% likelihood that the software
product will meet my needs. The third statement in the CPD states that if maturity is true and fault tolerance is
false, then there is a 40% likelihood that that the software product meets the required needs. In like manner, the
fourth statement in the CPD emphasizes that if software products are mature and fault tolerant as evidence in the
data, then these products completely meet the reliability needs. The combination of statements in this client-
developed CPD provides descriptions of levels of acceptance and these statements are probabilistic expressions of
the client’s software needs. The set of statements can also be used to deduce that fault tolerance is preferred over
maturity for the evaluation. The CPD values provided by the client also encapsulate a complete set of preference
orders between required sub-attributes. The preference orders can be linear or nonlinear depending on the
complexity of the required needs.

American Institute of Aeronautics and Astronautics

8

Figure 5. Standard CPD Development.

Figure 6. Client-Developed Reliability CPD.

4. Establish Sub-Attribute Thresholds
In order for a software evaluation to be meaningful to a client, threshold values must be established at the

beginning of the process. Depending on the criticality of the evaluation, thresholds may be established as reasonable
and customary values for required variables or stringent values for high integrity systems. Regardless of the case,
these thresholds need to be expressed. In this research, threshold values are expressed by the client for sub-
attributes. These threshold values are established before the evaluation begins and are used to tell the software
evaluator how to classify the available COTS software data. Thresholds are, in essence, classification mappings
from the available range of values in the COTS data to the required range of values used in the evaluation.

For example, the variable B in Figure 5 has two possible values, “< 5” and “>5.” In this instance, “5” was
established as a threshold value for B. “Greater than five” is considered one state and “less than five” is considered
another state. In actual evaluations, the data available are generally neither clean nor coherent. This means that
some type of preprocessing of the data is required to prepare the data to be used in the evaluation. The original data
for variable B, for example, may have had values ranging from -100 to +100. It is up to the client to determine what
threshold value for B is required for the evaluation. This is analogous to standard evaluation requirements that
express, “the accepted software shall have priority inversion capability.” In the attribute acceptance paradigm, it is
not known whether priority inversion exists in the data prior to evaluation. But, if it does exist, the values of priority
inversion will be set to either “yes” or “no.” Other examples of sub-attribute thresholds include:

• Standard requirements The COTS software must be fault tolerant.
• Paradigm threshold formalism FT=yes True and FT=no False

• Standard requirements The COTS software shall be stable 90% of the time.
• Paradigm threshold formalism Stable>=.9 Good and Stable<.9 Bad

• Standard requirements It is desirable for the COTS software to coexist with all

 legacy software.
• Paradigm threshold formalism Coexist>=.95 Yes

 .25<Coexist<.95 Unsure
 Coexist <=.25 No

American Institute of Aeronautics and Astronautics

9

Figure 7. Top-Down Maturity Model.

5. Top-Down Sub-Attribute Models
After the client constructs the CPD for each required attribute as an expression of his software needs, the client

then declares what type of sub-attribute model is required for each attribute. There are two types of sub-attribute
models, top-down and bottom-up. These models are a way of describing their software needs. Sometimes in an
evaluation, needs are very precise and other times they are not. The top-down model (these represent “shall” needs)
has the highest priority and requires a specific model form explicitly described by the client. The client also
explicitly describes how all the required variables (sub-attributes, sub-sub-attributes, etc.) relate to one another using
a set of CPDs. The model is declared before seeing the actual data evidence. Thus, the client is saying that the
described relationship is the only relationship that is allowed to meet the software need. Unfortunately, for such
stringent requirements, if the evidence is not found in the database, the need cannot be met by the available products
and the software evaluation terminates. As seen in the top-down model example in Figure 7, the client (using the
maturity sub-attribute from the reliability attribute in Figure 6) has defined maturity specifically as

maturity = priority inversion AND process design (5)

The CPD, as defined by the client, serves as an “AND” function. The CPD here states that the maturity sub-attribute
shall only be defined when priority inversion is true AND process design is true. The CPD also states that no other
evidence combinations for maturity will be allowed by the client. For this top-down model, the client is requiring
priority inversion and process design to be variables in the COTS software data. If these data are not found in the
database, then the maturity model requirement is not satisfied thus the evaluation terminates because the client
requires that this top-down maturity model shall be evaluated precisely as prescribed.

6. Bottom-Up Sub-Attribute Models

In bottom-up models, the client allows the sub-attribute models to be extracted from the evidence (data) using
some type of statistical data mining algorithm. These models represent software needs that are “nice to have” but not
absolutely necessary. Just like top-down models, bottom-up models are described via CPDs before seeing the actual
evidence and before performing the software evaluation. This sub-attribute model was added because there are
instances where the client may not know the exact model form for sub-attribute acceptance. The client may have a
vague sense that the sub-attribute should be included in the evaluation but not the specific form. Figure 8 displays
an example of a bottom-up sub-attribute model. In this network, a data set containing evidence on priority inversion,
process design, reentrancy and maturity from a set of COTS software candidates was mined using statistical data
mining algorithms to reveal the best model from the available data. For bottom-up models, the data mining
algorithm computes the CPD or relationship between the sub-attribute and the remaining model (as performed in
Figure 5).

Figure 8. Bottom-Up Maturity Model.

American Institute of Aeronautics and Astronautics

10

Figure 9. Missing Fault Tolerance Contingency CPD.

Figure 10. Latent Fail Safe Contingency CPD.

7. Contingency Planning
Because bottom-up models aren’t specified exactly, there is flexibility in developing these models from available

evidence. This flexibility is described in the form of sub-attribute contingencies. There are two types of sub-attribute
contingencies, “missing” and “latent.” The sub-attribute is “missing” means the sub-attribute is not present in the
evidence and cannot be substituted by other data. The sub-attribute is “latent” means the sub-attribute is not present
in the evidence but can be substituted with another data variable or data set. Given the Reliability example
described earlier in Figure 6, the client provided an expression of his software needs using a client-developed CPD.
This expression was made on the assumption that the evidence “mat” and “ft” would be found in the available
evidence. When the client modifies the CPD in the event that “ft” is missing, the client provides a contingency for
missing data. In the contingency CPD in Figure 9, the client has decided the following. If “ft” is missing, then
average True and False values of “ft” to obtain the new contingency CPD. It is up to the client to determine the
sub-attribute contingencies before seeing the evidence. The contingency function is selected by the client and, in
essence, provides for various trade-offs in the decision space.

In similar fashion, using the same Reliability example from Figure 6, the client can also determine how to
modify the original CPD if the sub-attribute fault tolerance or “ft” is latent, that is, missing but can be replaced by
another data variable. As seen in Figure 10, the client has decided that if “ft” is latent, then replace “ft” with
“failsafe” or “fs” and keep the same CPD values. This contingency allows the software evaluator to replace data
labels with other variables that serve similar functions as permitted by the client.

8. The Attribute Acceptance Document

The attribute acceptance document serves as a depository for the client. This document contains the attributes
and sub-attributes required for the software evaluation as well as the trade-offs, thresholds, model types and
contingencies that are an expression of the client’s needs and desires. Figure 11 depicts the generic structure of the
attribute acceptance document which differs substantially from the standard requirements format (Figure 1). The
first part of the attribute acceptance document (Figure 11) describes the type of software to be evaluated as well as a
description of its application and the criticality of its purpose. The second part provides a description of the major
partitions of the existing systems and the interfaces that are allowed between the system and the software. Several
evaluations establish partitions between the software and the rest of the system (ROS). The third component of the
document describes system level characteristics of the evaluation such as the standard that will be used to establish
the definition and relationships of the software attributes. From the entire set of attributes, the document determines
the set or subset of attributes to be used for the evaluation including the type of model required for each attribute.

The last and largest section of the document details the treatment of each of the required attributes. For each
required attribute, the document describes where it is defined, the required sub-attributes and the established
thresholds for use with the COTS software data. The types of model that will be used as well as the detailed client-
developed CPDs are included. The CPD is provided in the form of a contingency table that describes the client’s
expectations for the attribute in light of evidence (if it exists). Finally, defined descriptions are provided when top-

American Institute of Aeronautics and Astronautics

11

Figure 11. Generic Form of Attribute Acceptance Document.

American Institute of Aeronautics and Astronautics

12

down models are required and contingencies are provided when bottom-up models are permitted. This document is
designed to be used in a probabilistic software evaluation context with the incorporation of COTS software
historical data for sub-attributes to provide quantitative comparisons within a pool of COTS software products. It is
primarily designed to be used in a normative context but can be modified to play a crucial role in formative
evaluations.

C. Collect COTS Software Data
According to the process shown in Figure 4, it is the software evaluator’s responsibility to handle and preprocess

the historical COTS data. The preprocessing serves to clean and map the data to acceptable ranges required for the
COTS software evaluation. The evaluator will use the thresholds requested by the client to do this. These
thresholds reside in the attribute acceptance document. It is important to note that evaluation results both rest and
rely on the historical data from COTS software products. The term historical implies that the data was obtained
previously in time through some means and does not represent an estimate or prediction of future behavior. Some
software evaluations in the past have been based on theoretical models that predict what a product may or may not
due in the future. Because of the intractability of predicting future COTS software behavior, the evaluation process
in this research utilizes only actually recorded behavior. A Bayesian method was selected as an aggregation
technique to resolve a serious concern in evaluation based on historical data, namely, the ability to update an
evaluation once new knowledge has been observed. Bayesian networks have desirable properties of admissibility,
that is, as the data set increases, the probability of an evaluation obtaining an optimal product increases. For this
reason, the incorporation of COTS historical data is of prime importance. This also includes data collected from
software wrapper combination testing as long as the data represent actual observations and not predictive models
based on statistics.

Possible sources for COTS software data include individual product testing, vendor-supplied information, legal
briefings, customer complaints, product comparisons, software wrapper combination testing as well as information
garnered from past users of the product. Optimally, the data should be accurate, complete and mature. Accuracy
aims at minimizing incorrect product information. Completeness involves covering several products that span the
application domain. Maturity involves providing for a statistically significant product sample over a significant
length of time. Optimal conditions are rarely achieved in many real-world evaluations. However, the evaluator
should endeavor to acquire as much relevant COTS software product data as possible since the evaluation results
and the mined relationships of the sub-attributes rely heavily on the quality and quantity of the data acquired.

D. Perform the COTS Software Evaluation
It is the evaluator’s responsibility to perform a detailed software evaluation. The evaluation in this research

involves a probabilistic scheme that employs a Bayesian network as a coherent aggregation technique. Details of
this approach are provided by Morris3 and are outside the scope of this paper. Figure 4 describes the major inputs
that are required by the evaluator to evaluate the available set of products. By using the attribute acceptance
document, the software evaluator should not need months of interactive time with the client. The document, if
properly detailed by the client, should provide adequate information for the product evaluation in light of the needs,
trade-offs and contingencies specified by the client.

There are singular and multiple conditions generally placed on software evaluations that should be discussed. A
software evaluation is usually a goal-oriented process, that is, determine the COTS software product that helps the
system fulfill its requirements. Behind this process, however, a company or individual has conditions that must be
met for an evaluation to be considered legitimate. For companies or individuals that have full discretion over
funding, procurement and acquisition, the only condition required are the ones expressed in the requirements. Some
companies and organizations, namely the US federal government, have additional conditions that are customarily
placed on an evaluation. One of these conditions involves objectivity, that is, the evaluation should be conducted
with fairness in an unbiased manner. Some government evaluations have resulted in large contracts being awarded
to companies whose products are in alignment with the government’s needs. This gives an eager or desperate
company incentive to bias an evaluation in their favor. This biasing can take the form of manipulating a
competitor’s data, modifying their own data to appear more favorable, or even omitting unflattering data altogether.
Biasing can also take the form of influencing the requirements process with the goal of revealing requirements that
categorize their product as a sole source. To avoid these negative influences, the probabilistic evaluation process
stresses the need to establish an independent software evaluator. The process also aids the client in addressing their
needs and desires by establishing the attribute acceptance document without the (positive or negative) influence of
the COTS software data. The conditions in this software evaluation process provide integrity, independence and
objectivity for the client and the process.

American Institute of Aeronautics and Astronautics

13

IV. Conclusion
Companies and organizations are incorporating more and more COTS software products into their systems. In

order to select an appropriate product, these organizations are utilizing various software evaluation processes. To
use any evaluation technique, an evaluator needs a set of requirement specifications as a means of expressing the
goals of the evaluation. Unfortunately, the standard requirements format does not work well for COTS software
since the development and evolution of such products are controlled by individual product vendors. Clients,
unfortunately, do not know how the COTS software will behave with no insight into the source code. Even with the
standard format, bad and inadequate requirements have abounded resulting in cost overruns, schedule slips and lost
profitability. These inadequacies stem from a lack of understanding between the client and the evaluator. This
paper presents a new software requirements format called the attribute acceptance paradigm that is used in the
context of a probabilistic COTS software evaluation process. This paradigm allows a client to utilize clearly defined
attributes as well as technical performance trade-offs as an expression of his software needs. The paradigm includes
descriptions for thresholds and contingencies to aid the software evaluator. The new acceptance paradigm requires
the client to spend more time at the beginning of the evaluation process evaluating their needs and wants for the
purpose of reducing the time involved in the standard iterative evaluation process.

References
1Morris, A. T., and Beling, P. A., “Extracting Acyclic Dependency Models from Quality Standards for COTS Software

Evaluation ,” AIAA 1st Intelligent Systems Technical Conference, Chicago, Illinois, Sep. 20-22, 2004.
2Wallnau, Kurt, David Carney, Edwin Morris, Patricia Oberndorf and Charles Buhman, “A Tutorial on the Theory and

Practice of COTS Software Evaluation,” half day tutorial, Symposium on Software Engineering, Pittsburgh, PA, 1998.
3Morris, A. T., “A Bayesian Network-Based Scoring Methodology for COTS Software,” Ph.D. Dissertation, Department of

Systems and Information Engineering, University of Virginia, Charlottesville, VA, May 2004.
4Vliet, H. V., Software Engineering: Principles and Practice, 2nd Edition, Wiley & Sons, Inc. West Sussex, England, 2000.
5SEPG 100.0, Procedure for Software Planning, NASA Langley Research Center, Hampton, VA, November 1988.
6NASA Policy Directive 2820.1, NASA Software Policies, Washington, DC, May 1988.
7Abts, C., “COTS Software Life Cycle Cost Modeling,” Ph.D. Thesis, University of Southern California, 1999.
8Basili, V. R., and Boehm, B., “The COTS-Based Systems Top 10 List,” Software Management, May 2001, pp. 91-93.
9Popov, P., Riddle, S., et. al., On Systematic Design of Protectors for Employing OTS Items, Center for Software Reliability,

City University and Newcastle University, UK, 2001.
10Friedman, M. A. and Voas, J. M., Software Assessment: Reliability, Safety, Testability, John Wiley & Sons, New York, NY,

August 1995.
11Swartout, W. R. and Balzer, R., "On the Inevitable Intertwining of Specification and Implementation," Communications of

the ACM, Vol. 25, No. 7, 1982, pp. 438-439.
12Hooks, Ivy F. and Farry, Kristin A., Customer-Centered Products: Creating Successful Products Through Smart

Requirements Management, AMACOM, 2001.
13Dion, R., “Process improvement and the corporate balance sheet,” IEEE transactions on Software Engineering, vol. 10,

July 1993, pp. 283-285.
14Leffingwell, D., “Calculating the return on investment from more effective requirements management,” American

Programmer, Cutter Information Corp., Arlington, MA, April 1997, pp. 19-24.
15Gibson, J. E., A System Analyst’s Decalogue, University of Virginia, July 1991.
16Sutcliffe, Alistair, "On the Inevitable Intertwining of Systems and Software Requirements," Department of Computation,

University of Manchester, UK, April 2001.
17Elks, Carl R., and Johnson, Barry W., “Runtime Verification of COTS Components for Safety Related Systems,” AIAA 1st

Intelligent Systems Technical Conference, Chicago, Illinois, Sep. 20-22, 2004.
18Maiden, N.A.M., James, L., and Ncube, C., " Evaluating Large COTS Software Packages: Why Requirements and Use

Cases are Important", in the Proceedings of the 1st International Workshop on Ensuring Successful COTS Development, Los
Angeles, CA, May 1999.

19Nissen, Mark E., “Software Acquisition Top 10,” Naval Postgraduate School, URL: http://web.nps.navy.mil/
~menissen/mn3309/swtop10.htm [cited 14 September 2005].

20Popov, P., Riddle, S., Romanovsky, A. and Strigini, L., “On Systematic Design of Protectors for Employing OTS Items,”
In Proceedings of the 27th Euromicro Conference, Warsaw, Poland, 4-6 September 2001, pp. 22-29.

21Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann Publishers,
San Mateo, CA., 1988.

22Campos, L. M., “Characterizations of Decomposable Dependency Models,” Journal of Artificial Intelligence Research, Vol
5, 1996, 289-300.

23Shachter, R. “Probabilistic Inference and Influence Diagrams,” Operations Research, 36:589-604, 1988.
24ISO/IEC, Software engineering - Product quality - Part 1: Quality model, ISO/IEC 9126-1, June 2001.

American Institute of Aeronautics and Astronautics

14

http://pdf.aiaa.org/getfile.cfm?urlX=%2B%3A7I%276D%26X%5BRW%2BR%40D%20%0A&urla=%26%2A%22D%22%23P%22K%0A&urlb=%21%2A%20%20%20%0A&urlc=%21%2A0%20%20%0A&urle=%26%2BR%40%27%23%40%26G%0A
http://pdf.aiaa.org/getfile.cfm?urlX=%2B%3A7I%276D%26X%5BRW%2BR%40D%20%0A&urla=%26%2A%22D%22%23P%22K%0A&urlb=%21%2A%20%20%20%0A&urlc=%21%2A0%20%20%0A&urle=%26%2BR%40%27%23%40%26G%0A
http://www.sei.cmu.edu/cbs/cbs_slides/98symposium/eval_tut/index.htm
http://www.sei.cmu.edu/cbs/cbs_slides/98symposium/eval_tut/index.htm
http://web.nps.navy.mil/ ~menissen/mn3309/swtop10.htm
http://web.nps.navy.mil/ ~menissen/mn3309/swtop10.htm

	Nomenclature
	Introduction
	Background
	COTS Software Evaluations
	The Problem with Requirement Specifications for COTS Softwar
	Dependency Model Extraction from Software Quality Standards

	The Attribute Acceptance Paradigm
	Context of Paradigm in a Probabilistic Software Evaluation P
	Specification of Client Needs, Trade-offs and Contingencies
	Software Standard Selection for COTS Software Evaluation
	The Meaning of a Variable
	The Meaning of Client-Developed Conditional Probability Dist
	Establish Sub-Attribute Thresholds
	Top-Down Sub-Attribute Models
	Bottom-Up Sub-Attribute Models
	Contingency Planning
	The Attribute Acceptance Document

	Collect COTS Software Data
	Perform the COTS Software Evaluation

	Conclusion
	References

